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Imaging and Gaussian beams 

The surface of the beam vanishes 
at the exact focus location 
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“Real World” Focusing 

Diffraction with a slit aperture 
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Intensity Distribution in Gaussian Beam 

at each z-position, radial intensity distribution is Gaussian 
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Definition of Gaussian Beam 
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Definitions of the Beam Size 
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Total intensity of the beam: 
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Waist 

Divergence 

Rayleigh Range and Depth of Focus 
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Depth of focus 

 

zR =
π
λ

w0
2Rayleigh range value 

Beam radius at the distance 

Rayleigh range definition:   I(r=0, z=zR) = I0/2 

Vorführender
Präsentationsnotizen
Gaussian beam results in Gaussian temperature disctribution
can be easily calculateble – mathematics is relatively easy and all developed

different norms: 1/e, 1/e2 – depending on the peaóple using it. mathemathtians
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Cross-section of Gaussian Beam 
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a Gaussian Beam is completely defined by the parameters: 
w0 - waist at focal point 
zR – Rayleigh range 
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Cross-section of Gaussian Beam 
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I(r=0, z=zR) = I0/2               After one Rayleigh length 

I(r=0, z>>zR) = I0(zR/z)2     In the far field 

Some examples of properties: 
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Beam Parameter Product (BBP) 

11 

BBP 
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Focusing of a Gaussian Beam 

BBP stays constant for the 
same beam 

Nd:YAG and CO2 laser 
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M2 Factor 

2
0BPP w M λθ
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0w
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π

=Θ>Θgauss

for Gaussian (‘ideal’) beam 

for non-ideal beam an M2 factor introduced 

gaussian beam (M2=1, BBP = λ / π) 

M2 is a wavelength-independent measure of  beam quality 
(comparison with Gaussian beam)   

BPP (beam parameter product)  
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M2 Factor 

Θ>Θgaussw>2w0

2w0 Θ

gaussian beam (M2=1, BBP = λ / π) 

worse quality beam:  
same focusing, larger spot 

worse quality beam:  
stronger focusing  to get same spot 
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d 

Comparison of Gaussian Beam and Plane Wave  
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Focusing 
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Telescope can be used to increase beam diameter  
⇒  and reduce the minimal spot size 
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Why Beam is not always Gaussian? 
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Beam quality, M2: 
The ratio of the laser 
beam's multimode 
diameter-divergence 
product to the ideal 
diffraction limited 
(TEM00) beam 
diameter-divergence 
product 
 
M2=1  Gaussian 
beam 
q*=M2 ⋅ λ/π  

Modes TEM m,n 
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Gauss-Laguerre modes 
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Termes:  
A: Amplitude;      B: Hermite functions;        
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Comparison of BBP for Different Laser Designs 

Thin Disk Laser 

Fiber Laser 
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Vorführender
Präsentationsnotizen
Different laser types for machining , 

Slab, 
fiber, 
thin disks

different designs come from trying to solve termal problems :  thermal lens, heat evacuation
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Principle of Waveguiding 

total internal 
reflection step index fiber 

core cladding 
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Optical Fibers 

Optical fiber, acceptance angle ΦA ,  numerical aperture NA 

 

At injection, the refraction law gives       

 

Core n1 

clading, n2 

clading, n2 

Acceptance angle φA 
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Optical Fibers 

Optical fiber, acceptance angle ΦA ,  numerical aperture NA 

 

Core n1 

clading, n2 

clading, n2 

 

Ouverture numérique NA Angle d’acceptance φA 

Numerical aperture NA            Acceptance angle φA 

Numerical aperture NA for straight fiber 
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Fiber cable for high power laser 

Acceptance angle φA 

φA 

Core 

Clading 

Protection coating 
 

Interior 
protection coat 

 

Exterior 
protection coat 

 

Strength 
members 

 

Guided ray Lost ray penetrating the cladding 
Fiber dmage probable 
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Fiber-coupled Industrial Laser 

26 

High power Nd-YAG welding laser with fiber beam delivery 
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Laser Diode Bar 

Vorführender
Präsentationsnotizen
Find a replacement

bad quality beam 
additionally many beams – cannot be focused.
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Laser Diode Stack 
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Laser Diode T-Stack 
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Mask projection system 

Vorführender
Präsentationsnotizen
Excimers are more uv lamps than lasers. But the high M2 makes it well suited for beam homogenisation and imaging. Excimers are usually not focused beams.
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Exitech M8000 Micromachining System  

Travel  400 mm 

Accuracy  ±0.50 µm 

Repeatability  ±0.20 µm 

Straightness  ±0.40µm 

Flatness  ±0.40µm 
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Mask material 

Industrially applied for 193 nm 
lithography:  
• 75 nm Cr layer on fused silica 
• with AR Cr2O3  

Materials for excimer laser ablation masks 

? 
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Mask material 

Industrially applied for 193 nm 
lithography:  
• 75 nm Cr layer on fused silica 
• with AR Cr2O3  

Material Mo – Molybdenum 
sheets  

Cr on SiO2 Dielectric multilayer 
coating 

Reflectivity [%] 58 65 >99 

Damage 
Threshold [J/cm2] 0.5 0.3 >2 

Materials for excimer laser ablation masks 
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Dielectric Mask 
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Method Based on Interference 
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Submicron Structures 

• Phase mask setup for submicron structures 

K. Zimmer et al, Appl. Phys. A 74, 453–456 (2002) 

Experimental set-up for the generation of sub-
micron gratings by laser-ablation 

Principle of the proximity phase mask setup 
with water immersion 
B. Borchers et all, Appl. Phys. 107, 2010 
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